#!/usr/bin/env python3
""" Inference class definition for Transducer models."""
from __future__ import annotations
import argparse
import logging
import math
import sys
from pathlib import Path
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
import numpy as np
import torch
from packaging.version import parse as V
from typeguard import check_argument_types, check_return_type
from espnet2.asr_transducer.beam_search_transducer import (
BeamSearchTransducer,
Hypothesis,
)
from espnet2.asr_transducer.utils import TooShortUttError
from espnet2.fileio.datadir_writer import DatadirWriter
from espnet2.tasks.asr_transducer import ASRTransducerTask
from espnet2.tasks.lm import LMTask
from espnet2.text.build_tokenizer import build_tokenizer
from espnet2.text.token_id_converter import TokenIDConverter
from espnet2.torch_utils.device_funcs import to_device
from espnet2.torch_utils.set_all_random_seed import set_all_random_seed
from espnet2.utils import config_argparse
from espnet2.utils.types import str2bool, str2triple_str, str_or_none
from espnet.utils.cli_utils import get_commandline_args
[docs]class Speech2Text:
"""Speech2Text class for Transducer models.
Args:
asr_train_config: ASR model training config path.
asr_model_file: ASR model path.
beam_search_config: Beam search config path.
lm_train_config: Language Model training config path.
lm_file: Language Model config path.
token_type: Type of token units.
bpemodel: BPE model path.
device: Device to use for inference.
beam_size: Size of beam during search.
dtype: Data type.
lm_weight: Language model weight.
quantize_asr_model: Whether to apply dynamic quantization to ASR model.
quantize_modules: List of module names to apply dynamic quantization on.
quantize_dtype: Dynamic quantization data type.
nbest: Number of final hypothesis.
streaming: Whether to perform chunk-by-chunk inference.
chunk_size: Number of frames in chunk AFTER subsampling.
left_context: Number of frames in left context AFTER subsampling.
right_context: Number of frames in right context AFTER subsampling.
display_partial_hypotheses: Whether to display partial hypotheses.
"""
def __init__(
self,
asr_train_config: Union[Path, str] = None,
asr_model_file: Union[Path, str] = None,
beam_search_config: Dict[str, Any] = None,
lm_train_config: Union[Path, str] = None,
lm_file: Union[Path, str] = None,
token_type: str = None,
bpemodel: str = None,
device: str = "cpu",
beam_size: int = 5,
dtype: str = "float32",
lm_weight: float = 1.0,
quantize_asr_model: bool = False,
quantize_modules: List[str] = None,
quantize_dtype: str = "qint8",
nbest: int = 1,
streaming: bool = False,
chunk_size: int = 16,
left_context: int = 32,
right_context: int = 0,
display_partial_hypotheses: bool = False,
) -> None:
"""Construct a Speech2Text object."""
super().__init__()
assert check_argument_types()
asr_model, asr_train_args = ASRTransducerTask.build_model_from_file(
asr_train_config, asr_model_file, device
)
if quantize_asr_model:
if quantize_modules is not None:
if not all([q in ["LSTM", "Linear"] for q in quantize_modules]):
raise ValueError(
"Only 'Linear' and 'LSTM' modules are currently supported"
" by PyTorch and in --quantize_modules"
)
q_config = set([getattr(torch.nn, q) for q in quantize_modules])
else:
q_config = {torch.nn.Linear}
if quantize_dtype == "float16" and (V(torch.__version__) < V("1.5.0")):
raise ValueError(
"float16 dtype for dynamic quantization is not supported with torch"
" version < 1.5.0. Switching to qint8 dtype instead."
)
q_dtype = getattr(torch, quantize_dtype)
asr_model = torch.quantization.quantize_dynamic(
asr_model, q_config, dtype=q_dtype
).eval()
else:
asr_model.to(dtype=getattr(torch, dtype)).eval()
if lm_train_config is not None:
lm, lm_train_args = LMTask.build_model_from_file(
lm_train_config, lm_file, device
)
lm_scorer = lm.lm
else:
lm_scorer = None
# 4. Build BeamSearch object
if beam_search_config is None:
beam_search_config = {}
beam_search = BeamSearchTransducer(
asr_model.decoder,
asr_model.joint_network,
beam_size,
lm=lm_scorer,
lm_weight=lm_weight,
nbest=nbest,
**beam_search_config,
)
token_list = asr_model.token_list
if token_type is None:
token_type = asr_train_args.token_type
if bpemodel is None:
bpemodel = asr_train_args.bpemodel
if token_type is None:
tokenizer = None
elif token_type == "bpe":
if bpemodel is not None:
tokenizer = build_tokenizer(token_type=token_type, bpemodel=bpemodel)
else:
tokenizer = None
else:
tokenizer = build_tokenizer(token_type=token_type)
converter = TokenIDConverter(token_list=token_list)
logging.info(f"Text tokenizer: {tokenizer}")
self.asr_model = asr_model
self.asr_train_args = asr_train_args
self.device = device
self.dtype = dtype
self.nbest = nbest
self.converter = converter
self.tokenizer = tokenizer
self.beam_search = beam_search
self.streaming = streaming
self.chunk_size = max(chunk_size, 0)
self.left_context = max(left_context, 0)
self.right_context = max(right_context, 0)
if not streaming or chunk_size == 0:
self.streaming = False
self.asr_model.encoder.dynamic_chunk_training = False
self.n_fft = asr_train_args.frontend_conf.get("n_fft", 512)
self.hop_length = asr_train_args.frontend_conf.get("hop_length", 128)
if asr_train_args.frontend_conf.get("win_length", None) is not None:
self.frontend_window_size = asr_train_args.frontend_conf["win_length"]
else:
self.frontend_window_size = self.n_fft
self.window_size = self.chunk_size + self.right_context
self._raw_ctx = self.asr_model.encoder.get_encoder_input_raw_size(
self.window_size, self.hop_length
)
self.last_chunk_length = (
self.asr_model.encoder.embed.min_frame_length + self.right_context + 1
) * self.hop_length
self.reset_inference_cache()
[docs] def reset_inference_cache(self) -> None:
"""Reset Speech2Text parameters."""
self.frontend_cache = None
self.asr_model.encoder.reset_streaming_cache(
self.left_context, device=self.device
)
self.beam_search.reset_inference_cache()
self.num_processed_frames = torch.tensor([[0]], device=self.device)
[docs] def apply_frontend(
self, speech: torch.Tensor, is_final: bool = False
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Forward frontend.
Args:
speech: Speech data. (S)
is_final: Whether speech corresponds to the final (or only) chunk of data.
Returns:
feats: Features sequence. (1, T_in, F)
feats_lengths: Features sequence length. (1, T_in, F)
"""
if self.frontend_cache is not None:
speech = torch.cat([self.frontend_cache["waveform_buffer"], speech], dim=0)
if is_final:
if self.streaming and speech.size(0) < self.last_chunk_length:
pad = torch.zeros(
self.last_chunk_length - speech.size(0), dtype=speech.dtype
)
speech = torch.cat([speech, pad], dim=0)
speech_to_process = speech
waveform_buffer = None
else:
n_frames = (
speech.size(0) - (self.frontend_window_size - self.hop_length)
) // self.hop_length
n_residual = (
speech.size(0) - (self.frontend_window_size - self.hop_length)
) % self.hop_length
speech_to_process = speech.narrow(
0,
0,
(self.frontend_window_size - self.hop_length)
+ n_frames * self.hop_length,
)
waveform_buffer = speech.narrow(
0,
speech.size(0)
- (self.frontend_window_size - self.hop_length)
- n_residual,
(self.frontend_window_size - self.hop_length) + n_residual,
).clone()
speech_to_process = speech_to_process.unsqueeze(0).to(
getattr(torch, self.dtype)
)
lengths = speech_to_process.new_full(
[1], dtype=torch.long, fill_value=speech_to_process.size(1)
)
batch = {"speech": speech_to_process, "speech_lengths": lengths}
batch = to_device(batch, device=self.device)
feats, feats_lengths = self.asr_model._extract_feats(**batch)
if self.asr_model.normalize is not None:
feats, feats_lengths = self.asr_model.normalize(feats, feats_lengths)
if is_final:
if self.frontend_cache is None:
pass
else:
feats = feats.narrow(
1,
math.ceil(
math.ceil(self.frontend_window_size / self.hop_length) / 2
),
feats.size(1)
- math.ceil(
math.ceil(self.frontend_window_size / self.hop_length) / 2
),
)
else:
if self.frontend_cache is None:
feats = feats.narrow(
1,
0,
feats.size(1)
- math.ceil(
math.ceil(self.frontend_window_size / self.hop_length) / 2
),
)
else:
feats = feats.narrow(
1,
math.ceil(
math.ceil(self.frontend_window_size / self.hop_length) / 2
),
feats.size(1)
- 2
* math.ceil(
math.ceil(self.frontend_window_size / self.hop_length) / 2
),
)
feats_lengths = feats.new_full([1], dtype=torch.long, fill_value=feats.size(1))
if is_final:
self.frontend_cache = None
else:
self.frontend_cache = {"waveform_buffer": waveform_buffer}
return feats, feats_lengths
[docs] @torch.no_grad()
def streaming_decode(
self,
speech: Union[torch.Tensor, np.ndarray],
is_final: bool = True,
) -> List[Hypothesis]:
"""Speech2Text streaming call.
Args:
speech: Chunk of speech data. (S)
is_final: Whether speech corresponds to the final chunk of data.
Returns:
nbest_hypothesis: N-best hypothesis.
"""
if isinstance(speech, np.ndarray):
speech = torch.tensor(speech)
feats, feats_length = self.apply_frontend(speech, is_final=is_final)
enc_out = self.asr_model.encoder.chunk_forward(
feats,
feats_length,
self.num_processed_frames,
left_context=self.left_context,
right_context=self.right_context,
)
nbest_hyps = self.beam_search(enc_out[0], is_final=is_final)
self.num_processed_frames += self.chunk_size
if is_final:
self.reset_inference_cache()
return nbest_hyps
@torch.no_grad()
def __call__(self, speech: Union[torch.Tensor, np.ndarray]) -> List[Hypothesis]:
"""Speech2Text call.
Args:
speech: Speech data. (S)
Returns:
nbest_hypothesis: N-best hypothesis.
"""
assert check_argument_types()
if isinstance(speech, np.ndarray):
speech = torch.tensor(speech)
feats, feats_length = self.apply_frontend(speech)
enc_out, _ = self.asr_model.encoder(feats, feats_length)
nbest_hyps = self.beam_search(enc_out[0])
return nbest_hyps
[docs] def hypotheses_to_results(self, nbest_hyps: List[Hypothesis]) -> List[Any]:
"""Build partial or final results from the hypotheses.
Args:
nbest_hyps: N-best hypothesis.
Returns:
results: Results containing different representation for the hypothesis.
"""
results = []
for hyp in nbest_hyps:
token_int = list(filter(lambda x: x != 0, hyp.yseq))
token = self.converter.ids2tokens(token_int)
if self.tokenizer is not None:
text = self.tokenizer.tokens2text(token)
else:
text = None
results.append((text, token, token_int, hyp))
assert check_return_type(results)
return results
[docs] @staticmethod
def from_pretrained(
model_tag: Optional[str] = None,
**kwargs: Optional[Any],
) -> Speech2Text:
"""Build Speech2Text instance from the pretrained model.
Args:
model_tag: Model tag of the pretrained models.
Return:
: Speech2Text instance.
"""
if model_tag is not None:
try:
from espnet_model_zoo.downloader import ModelDownloader
except ImportError:
logging.error(
"`espnet_model_zoo` is not installed. "
"Please install via `pip install -U espnet_model_zoo`."
)
raise
d = ModelDownloader()
kwargs.update(**d.download_and_unpack(model_tag))
return Speech2Text(**kwargs)
[docs]def inference(
output_dir: str,
batch_size: int,
dtype: str,
beam_size: int,
ngpu: int,
seed: int,
lm_weight: float,
nbest: int,
num_workers: int,
log_level: Union[int, str],
data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
asr_train_config: Optional[str],
asr_model_file: Optional[str],
beam_search_config: Optional[dict],
lm_train_config: Optional[str],
lm_file: Optional[str],
model_tag: Optional[str],
token_type: Optional[str],
bpemodel: Optional[str],
key_file: Optional[str],
allow_variable_data_keys: bool,
quantize_asr_model: Optional[bool],
quantize_modules: Optional[List[str]],
quantize_dtype: Optional[str],
streaming: Optional[bool],
chunk_size: Optional[int],
left_context: Optional[int],
right_context: Optional[int],
display_partial_hypotheses: bool,
) -> None:
"""Transducer model inference.
Args:
output_dir: Output directory path.
batch_size: Batch decoding size.
dtype: Data type.
beam_size: Beam size.
ngpu: Number of GPUs.
seed: Random number generator seed.
lm_weight: Weight of language model.
nbest: Number of final hypothesis.
num_workers: Number of workers.
log_level: Level of verbose for logs.
data_path_and_name_and_type:
asr_train_config: ASR model training config path.
asr_model_file: ASR model path.
beam_search_config: Beam search config path.
lm_train_config: Language Model training config path.
lm_file: Language Model path.
model_tag: Model tag.
token_type: Type of token units.
bpemodel: BPE model path.
key_file: File key.
allow_variable_data_keys: Whether to allow variable data keys.
quantize_asr_model: Whether to apply dynamic quantization to ASR model.
quantize_modules: List of module names to apply dynamic quantization on.
quantize_dtype: Dynamic quantization data type.
streaming: Whether to perform chunk-by-chunk inference.
chunk_size: Number of frames in chunk AFTER subsampling.
left_context: Number of frames in left context AFTER subsampling.
right_context: Number of frames in right context AFTER subsampling.
display_partial_hypotheses: Whether to display partial hypotheses.
"""
assert check_argument_types()
if batch_size > 1:
raise NotImplementedError("batch decoding is not implemented")
if ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1:
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build speech2text
speech2text_kwargs = dict(
asr_train_config=asr_train_config,
asr_model_file=asr_model_file,
beam_search_config=beam_search_config,
lm_train_config=lm_train_config,
lm_file=lm_file,
token_type=token_type,
bpemodel=bpemodel,
device=device,
dtype=dtype,
beam_size=beam_size,
lm_weight=lm_weight,
nbest=nbest,
quantize_asr_model=quantize_asr_model,
quantize_modules=quantize_modules,
quantize_dtype=quantize_dtype,
streaming=streaming,
chunk_size=chunk_size,
left_context=left_context,
right_context=right_context,
)
speech2text = Speech2Text.from_pretrained(
model_tag=model_tag,
**speech2text_kwargs,
)
# 3. Build data-iterator
loader = ASRTransducerTask.build_streaming_iterator(
data_path_and_name_and_type,
dtype=dtype,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
preprocess_fn=ASRTransducerTask.build_preprocess_fn(
speech2text.asr_train_args, False
),
collate_fn=ASRTransducerTask.build_collate_fn(
speech2text.asr_train_args, False
),
allow_variable_data_keys=allow_variable_data_keys,
inference=True,
)
# 4 .Start for-loop
with DatadirWriter(output_dir) as writer:
for keys, batch in loader:
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
assert len(batch.keys()) == 1
try:
if speech2text.streaming:
speech = batch["speech"]
_steps = len(speech) // speech2text._raw_ctx
_end = 0
for i in range(_steps):
_end = (i + 1) * speech2text._raw_ctx
speech2text.streaming_decode(
speech[i * speech2text._raw_ctx : _end], is_final=False
)
final_hyps = speech2text.streaming_decode(
speech[_end : len(speech)], is_final=True
)
else:
final_hyps = speech2text(**batch)
results = speech2text.hypotheses_to_results(final_hyps)
except TooShortUttError as e:
logging.warning(f"Utterance {keys} {e}")
hyp = Hypothesis(score=0.0, yseq=[], dec_state=None)
results = [[" ", ["<space>"], [2], hyp]] * nbest
key = keys[0]
for n, (text, token, token_int, hyp) in zip(range(1, nbest + 1), results):
ibest_writer = writer[f"{n}best_recog"]
ibest_writer["token"][key] = " ".join(token)
ibest_writer["token_int"][key] = " ".join(map(str, token_int))
ibest_writer["score"][key] = str(hyp.score)
if text is not None:
ibest_writer["text"][key] = text
[docs]def get_parser():
"""Get Transducer model inference parser."""
parser = config_argparse.ArgumentParser(
description="ASR Transducer Decoding",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--log_level",
type=lambda x: x.upper(),
default="INFO",
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
help="The verbose level of logging",
)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument(
"--ngpu",
type=int,
default=0,
help="The number of gpus. 0 indicates CPU mode",
)
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument(
"--dtype",
default="float32",
choices=["float16", "float32", "float64"],
help="Data type",
)
parser.add_argument(
"--num_workers",
type=int,
default=1,
help="The number of workers used for DataLoader",
)
group = parser.add_argument_group("Input data related")
group.add_argument(
"--data_path_and_name_and_type",
type=str2triple_str,
required=True,
action="append",
)
group.add_argument("--key_file", type=str_or_none)
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
group = parser.add_argument_group("The model configuration related")
group.add_argument(
"--asr_train_config",
type=str,
help="ASR training configuration",
)
group.add_argument(
"--asr_model_file",
type=str,
help="ASR model parameter file",
)
group.add_argument(
"--lm_train_config",
type=str,
help="LM training configuration",
)
group.add_argument(
"--lm_file",
type=str,
help="LM parameter file",
)
group.add_argument(
"--model_tag",
type=str,
help="Pretrained model tag. If specify this option, *_train_config and "
"*_file will be overwritten",
)
group = parser.add_argument_group("Beam-search related")
group.add_argument(
"--batch_size",
type=int,
default=1,
help="The batch size for inference",
)
group.add_argument("--nbest", type=int, default=1, help="Output N-best hypotheses")
group.add_argument("--beam_size", type=int, default=5, help="Beam size")
group.add_argument("--lm_weight", type=float, default=1.0, help="RNNLM weight")
group.add_argument(
"--beam_search_config",
default={},
help="The keyword arguments for transducer beam search.",
)
group = parser.add_argument_group("Text converter related")
group.add_argument(
"--token_type",
type=str_or_none,
default=None,
choices=["char", "bpe", None],
help="The token type for ASR model. "
"If not given, refers from the training args",
)
group.add_argument(
"--bpemodel",
type=str_or_none,
default=None,
help="The model path of sentencepiece. "
"If not given, refers from the training args",
)
group = parser.add_argument_group("Dynamic quantization related")
parser.add_argument(
"--quantize_asr_model",
type=bool,
default=False,
help="Apply dynamic quantization to ASR model.",
)
parser.add_argument(
"--quantize_modules",
nargs="*",
default=None,
help="""Module names to apply dynamic quantization on.
The module names are provided as a list, where each name is separated
by a comma (e.g.: --quantize-config=[Linear,LSTM,GRU]).
Each specified name should be an attribute of 'torch.nn', e.g.:
torch.nn.Linear, torch.nn.LSTM, torch.nn.GRU, ...""",
)
parser.add_argument(
"--quantize_dtype",
type=str,
default="qint8",
choices=["float16", "qint8"],
help="Dtype for dynamic quantization.",
)
group = parser.add_argument_group("Streaming related")
parser.add_argument(
"--streaming",
type=bool,
default=False,
help="Whether to perform chunk-by-chunk inference.",
)
parser.add_argument(
"--chunk_size",
type=int,
default=16,
help="Number of frames in chunk AFTER subsampling.",
)
parser.add_argument(
"--left_context",
type=int,
default=32,
help="Number of frames in left context of the chunk AFTER subsampling.",
)
parser.add_argument(
"--right_context",
type=int,
default=0,
help="Number of frames in right context of the chunk AFTER subsampling.",
)
parser.add_argument(
"--display_partial_hypotheses",
type=bool,
default=False,
help="Whether to display partial hypotheses during chunk-by-chunk inference.",
)
return parser
[docs]def main(cmd=None):
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
args = parser.parse_args(cmd)
kwargs = vars(args)
kwargs.pop("config", None)
inference(**kwargs)
if __name__ == "__main__":
main()