Source code for espnet2.asr_transducer.encoder.blocks.conv_input

"""ConvInput block for Transducer encoder."""

from typing import Optional, Tuple, Union

import torch

from espnet2.asr_transducer.utils import sub_factor_to_params


[docs]class ConvInput(torch.nn.Module): """ConvInput module definition. Args: input_size: Input size. conv_size: Convolution size. subsampling_factor: Subsampling factor. vgg_like: Whether to use a VGG-like network. output_size: Block output dimension. """ def __init__( self, input_size: int, conv_size: Union[int, Tuple], subsampling_factor: int = 4, vgg_like: bool = True, output_size: Optional[int] = None, ) -> None: """Construct a ConvInput object.""" super().__init__() if vgg_like: conv_size1, conv_size2 = conv_size self.conv = torch.nn.Sequential( torch.nn.Conv2d(1, conv_size1, 3, stride=1, padding=1), torch.nn.ReLU(), torch.nn.Conv2d(conv_size1, conv_size1, 3, stride=1, padding=1), torch.nn.ReLU(), torch.nn.MaxPool2d((3, 2)), torch.nn.Conv2d(conv_size1, conv_size2, 3, stride=1, padding=1), torch.nn.ReLU(), torch.nn.Conv2d(conv_size2, conv_size2, 3, stride=1, padding=1), torch.nn.ReLU(), torch.nn.MaxPool2d((2, 2)), ) output_proj = conv_size2 * ((input_size // 2) // 2) self.subsampling_factor = 4 self.create_new_mask = self.create_new_vgg_mask else: kernel_2, stride_2, conv_2_output_size = sub_factor_to_params( subsampling_factor, input_size, ) self.conv = torch.nn.Sequential( torch.nn.Conv2d(1, conv_size, 3, 2), torch.nn.ReLU(), torch.nn.Conv2d(conv_size, conv_size, kernel_2, stride_2), torch.nn.ReLU(), ) output_proj = conv_size * conv_2_output_size self.subsampling_factor = subsampling_factor self.kernel_2 = kernel_2 self.stride_2 = stride_2 self.create_new_mask = self.create_new_conv2d_mask self.vgg_like = vgg_like self.min_frame_length = 7 if subsampling_factor < 6 else 11 if output_size is not None: self.output = torch.nn.Linear(output_proj, output_size) self.output_size = output_size else: self.output = None self.output_size = output_proj
[docs] def forward( self, x: torch.Tensor, mask: Optional[torch.Tensor] ) -> Tuple[torch.Tensor, torch.Tensor]: """Encode input sequences. Args: x: ConvInput input sequences. (B, T, D_feats) mask: Mask of input sequences. (B, 1, T) Returns: x: ConvInput output sequences. (B, sub(T), D_out) mask: Mask of output sequences. (B, 1, sub(T)) """ x = self.conv(x.unsqueeze(1)) b, c, t, f = x.size() x = x.transpose(1, 2).contiguous().view(b, t, c * f) if self.output is not None: x = self.output(x) if mask is not None: mask = self.create_new_mask(mask) return x, mask
[docs] def create_new_vgg_mask(self, mask: torch.Tensor) -> torch.Tensor: """Create a new mask for VGG output sequences. Args: mask: Mask of input sequences. (B, T) Returns: mask: Mask of output sequences. (B, sub(T)) """ vgg1_t_len = mask.size(1) - (mask.size(1) % 3) mask = mask[:, :vgg1_t_len][:, ::3] vgg2_t_len = mask.size(1) - (mask.size(1) % 2) mask = mask[:, :vgg2_t_len][:, ::2] return mask
[docs] def create_new_conv2d_mask(self, mask: torch.Tensor) -> torch.Tensor: """Create new conformer mask for Conv2d output sequences. Args: mask: Mask of input sequences. (B, T) Returns: mask: Mask of output sequences. (B, sub(T)) """ return mask[:, :-2:2][:, : -(self.kernel_2 - 1) : self.stride_2]
[docs] def get_size_before_subsampling(self, size: int) -> int: """Return the original size before subsampling for a given size. Args: size: Number of frames after subsampling. Returns: : Number of frames before subsampling. """ if self.vgg_like: return ((size * 2) * 3) + 1 return ((size + 2) * 2) + (self.kernel_2 - 1) * self.stride_2