Source code for espnet2.asr.encoder.hubert_encoder

# Copyright 2021 Tianzi Wang
# Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0

# Thanks to Abdelrahman Mohamed and Wei-Ning Hsu's help in this implementation,
# Their origial Hubert work is in:
#     Paper: https://arxiv.org/pdf/2106.07447.pdf
#     Code in Fairseq: https://github.com/pytorch/fairseq/tree/master/examples/hubert


"""Encoder definition."""
import contextlib
import copy
import logging
import os
from pathlib import Path
from typing import Optional, Tuple

import torch
import yaml
from filelock import FileLock
from typeguard import check_argument_types

from espnet2.asr.encoder.abs_encoder import AbsEncoder
from espnet.nets.pytorch_backend.nets_utils import make_pad_mask
from espnet.nets.pytorch_backend.transformer.layer_norm import LayerNorm


[docs]class FairseqHubertEncoder(AbsEncoder): """FairSeq Hubert encoder module, used for loading pretrained weight and finetuning Args: input_size: input dim hubert_url: url to Hubert pretrained model hubert_dir_path: directory to download the Wav2Vec2.0 pretrained model. output_size: dimension of attention normalize_before: whether to use layer_norm before the first block freeze_finetune_updates: steps that freeze all layers except output layer before tuning the whole model (nessasary to prevent overfit). dropout_rate: dropout rate activation_dropout: dropout rate in activation function attention_dropout: dropout rate in attention Hubert specific Args: Please refer to: https://github.com/pytorch/fairseq/blob/master/fairseq/models/hubert/hubert.py """ def __init__( self, input_size: int, hubert_url: str = "./", hubert_dir_path: str = "./", output_size: int = 256, normalize_before: bool = False, freeze_finetune_updates: int = 0, dropout_rate: float = 0.0, activation_dropout: float = 0.1, attention_dropout: float = 0.0, mask_length: int = 10, mask_prob: float = 0.75, mask_selection: str = "static", mask_other: int = 0, apply_mask: bool = True, mask_channel_length: int = 64, mask_channel_prob: float = 0.5, mask_channel_other: int = 0, mask_channel_selection: str = "static", layerdrop: float = 0.1, feature_grad_mult: float = 0.0, ): assert check_argument_types() super().__init__() self.apply_mask = apply_mask try: import fairseq from fairseq.models.hubert.hubert import HubertModel except Exception as e: print("Error: FairSeq is not properly installed.") print("Please install FairSeq: cd ${MAIN_ROOT}/tools && make fairseq.done") raise e arg_overrides = { "dropout": dropout_rate, "activation_dropout": activation_dropout, "attention_dropout": attention_dropout, "mask_length": mask_length, "mask_prob": mask_prob, "mask_selection": mask_selection, "mask_other": mask_other, "mask_channel_length": mask_channel_length, "mask_channel_prob": mask_channel_prob, "mask_channel_selection": mask_channel_selection, "mask_channel_other": mask_channel_other, "encoder_layerdrop": layerdrop, "feature_grad_mult": feature_grad_mult, "data": hubert_dir_path, } if hubert_url == "espnet": self.hubert_model_path = hubert_dir_path s = torch.load( self.hubert_model_path, map_location=torch.device("cpu"), ) if all("encoder.encoder" in k for k in s): try: state = { k.replace("encoder.encoder.", ""): v for k, v in s.items() if "label_embs_concat" not in k } except Exception as e: raise e config_file = os.path.join( "/".join(self.hubert_model_path.split("/")[:-1]), "config.yaml", ) config_file = Path(config_file) with config_file.open("r", encoding="utf-8") as f: self.pretrained_cfg = yaml.safe_load(f) model = FairseqHubertPretrainEncoder( input_size=self.pretrained_cfg["input_size"], hubert_dict=self.pretrained_cfg["hubert_dict"], **self.pretrained_cfg["encoder_conf"], ) model = model.encoder d = self.pretrained_cfg["encoder_conf"]["output_size"] self.pretrained_params = copy.deepcopy(state) else: self.hubert_model_path = download_hubert(hubert_url, hubert_dir_path) ( models, self.pretrained_cfg, task, ) = fairseq.checkpoint_utils.load_model_ensemble_and_task( [self.hubert_model_path], arg_overrides=arg_overrides, strict=False, ) model = models[0] d = self.pretrained_cfg.model.encoder_embed_dim self.pretrained_params = copy.deepcopy(model.state_dict()) self._output_size = output_size if not isinstance(model, HubertModel): try: model = model.hubert_encoder.hubert_model except Exception as e: print( "Error: pretrained models should be within: " "'HubertModel, Hubertctc' classes, etc." ) raise e self.encoders = model self.normalize_before = normalize_before if self.normalize_before: self.after_norm = LayerNorm(output_size) if output_size and output_size != d: self.output_layer = torch.nn.Sequential( torch.nn.Linear(d, output_size), ) else: self.output_layer = None self.freeze_finetune_updates = freeze_finetune_updates self.register_buffer("num_updates", torch.LongTensor([0]))
[docs] def output_size(self) -> int: return self._output_size
[docs] def forward( self, xs_pad: torch.Tensor, ilens: torch.Tensor, prev_states: torch.Tensor = None, ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: """Forward Hubert ASR Encoder. Args: xs_pad: input tensor (B, L, D) ilens: input length (B) prev_states: Not to be used now. Returns: position embedded tensor and mask """ masks = make_pad_mask(ilens).to(xs_pad.device) ft = self.freeze_finetune_updates <= self.num_updates if self.num_updates <= self.freeze_finetune_updates: self.num_updates += 1 elif ft and self.num_updates == self.freeze_finetune_updates + 1: self.num_updates += 1 logging.info("Start fine-tuning hubert parameters!") else: self.num_updates += 1 with torch.no_grad() if not ft else contextlib.nullcontext(): enc_outputs = self.encoders( xs_pad, padding_mask=masks, mask=self.apply_mask and self.training, features_only=True, output_layer=None, ) xs_pad = enc_outputs["x"] # (B,T,C), masks = enc_outputs["padding_mask"] # (B, T) # save gpu memory del enc_outputs olens = (~masks).sum(dim=1) if self.output_layer is not None: xs_pad = self.output_layer(xs_pad) if self.normalize_before: xs_pad = self.after_norm(xs_pad) return xs_pad, olens, None
[docs] def reload_pretrained_parameters(self): self.encoders.load_state_dict(self.pretrained_params, strict=False) logging.info("Pretrained Hubert model parameters reloaded!")
[docs]class FairseqHubertPretrainEncoder(AbsEncoder): """FairSeq Hubert pretrain encoder module, only used for pretraining stage Args: input_size: input dim output_size: dimension of attention linear_units: dimension of feedforward layers attention_heads: the number of heads of multi head attention num_blocks: the number of encoder blocks dropout_rate: dropout rate attention_dropout_rate: dropout rate in attention hubert_dict: target dictionary for Hubert pretraining label_rate: label frame rate. -1 for sequence label sample_rate: target sample rate. use_amp: whether to use automatic mixed precision normalize_before: whether to use layer_norm before the first block """ def __init__( self, input_size: int = 1, output_size: int = 1024, linear_units: int = 1024, attention_heads: int = 12, num_blocks: int = 12, dropout_rate: float = 0.0, attention_dropout_rate: float = 0.0, activation_dropout_rate: float = 0.0, hubert_dict: str = "./dict.txt", label_rate: int = 100, checkpoint_activations: bool = False, sample_rate: int = 16000, use_amp: bool = False, **kwargs, ): assert check_argument_types() super().__init__() self._output_size = output_size self.use_amp = use_amp try: from fairseq.data.dictionary import Dictionary from fairseq.models.hubert.hubert import HubertConfig # noqa: H301 from fairseq.models.hubert.hubert import HubertModel # noqa: H301 from fairseq.models.hubert.hubert import ( # noqa: H301 HubertPretrainingConfig, ) except Exception as e: print("Error: FairSeq is not properly installed.") print("Please install FairSeq: cd ${MAIN_ROOT}/tools && make fairseq.done") raise e cfg_overides = { "encoder_embed_dim": output_size, "encoder_ffn_embed_dim": linear_units, "encoder_attention_heads": attention_heads, "encoder_layers": num_blocks, "final_dim": output_size, "dropout": dropout_rate, "attention_dropout": attention_dropout_rate, "label_rate": label_rate, "checkpoint_activations": checkpoint_activations, } cfg_overides = {**cfg_overides, **kwargs} self.cfg = HubertConfig() for key, value in cfg_overides.items(): if hasattr(self.cfg, key): setattr(self.cfg, key, value) hubert_task_cfg = HubertPretrainingConfig() hubert_task_cfg_overides = { "label_rate": label_rate, "sample_rate": sample_rate, } for key, value in hubert_task_cfg_overides.items(): if hasattr(hubert_task_cfg, key): setattr(hubert_task_cfg, key, value) d = Dictionary() self._build_dictionary(d, hubert_dict) self.encoder = HubertModel(self.cfg, hubert_task_cfg, self.dictionaries) def _build_dictionary(self, dictionary, hubert_dict_path): if os.path.exists(f"{hubert_dict_path}"): setattr(dictionary, "symbols", []) setattr(dictionary, "count", []) setattr(dictionary, "indices", {}) dictionary.add_from_file(f"{hubert_dict_path}") else: dictionary.add_symbol("0") self.dictionaries = [dictionary]
[docs] def output_size(self) -> int: return self._output_size
[docs] def forward( self, xs_pad: torch.Tensor, ilens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_length: torch.Tensor, prev_states: torch.Tensor = None, ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: """Forward Hubert Pretrain Encoder. Args: xs_pad: input tensor (B, L, D) ilens: input length (B) prev_states: Not to be used now. Returns: position embedded tensor and mask """ self.cast_mask_emb() masks = make_pad_mask(ilens).to(xs_pad.device) ys_pad = ys_pad[:, : min(ys_pad_length)] enc_outputs = self.encoder( xs_pad, padding_mask=masks, mask=True, target_list=[ys_pad], features_only=False, ) return enc_outputs
[docs] def cast_mask_emb(self): if self.use_amp and self.encoder.mask_emb.dtype != torch.cuda.HalfTensor: self.encoder.mask_emb = torch.nn.Parameter(self.encoder.mask_emb.half())
[docs] def reload_pretrained_parameters(self): self.encoder.mask_emb = torch.nn.Parameter( torch.HalfTensor(self.cfg.encoder_embed_dim).uniform_() ) logging.info( f"Hubert mask embedding re-initiallized!, \ {self.encoder.mask_emb.dtype}, \ {self.use_amp}" )
[docs]def download_hubert(model_url, dir_path): os.makedirs(dir_path, exist_ok=True) model_name = model_url.split("/")[-1] model_path = os.path.join(dir_path, model_name) with FileLock(model_path + ".lock"): if not os.path.exists(model_path): torch.hub.download_url_to_file(model_url, model_path) logging.info(f"Hubert model downloaded {model_path}") else: logging.info(f"Hubert model {model_path} already exists.") return model_path