"""Parallel beam search module."""
import logging
from typing import Any, Dict, List, NamedTuple, Tuple
import torch
from torch.nn.utils.rnn import pad_sequence
from espnet.nets.beam_search import BeamSearch, Hypothesis
[docs]class BatchHypothesis(NamedTuple):
"""Batchfied/Vectorized hypothesis data type."""
yseq: torch.Tensor = torch.tensor([]) # (batch, maxlen)
score: torch.Tensor = torch.tensor([]) # (batch,)
length: torch.Tensor = torch.tensor([]) # (batch,)
scores: Dict[str, torch.Tensor] = dict() # values: (batch,)
states: Dict[str, Dict] = dict()
def __len__(self) -> int:
"""Return a batch size."""
return len(self.length)
[docs]class BatchBeamSearch(BeamSearch):
"""Batch beam search implementation."""
[docs] def batchfy(self, hyps: List[Hypothesis]) -> BatchHypothesis:
"""Convert list to batch."""
if len(hyps) == 0:
return BatchHypothesis()
return BatchHypothesis(
yseq=pad_sequence(
[h.yseq for h in hyps], batch_first=True, padding_value=self.eos
),
length=torch.tensor([len(h.yseq) for h in hyps], dtype=torch.int64),
score=torch.tensor([h.score for h in hyps]),
scores={k: torch.tensor([h.scores[k] for h in hyps]) for k in self.scorers},
states={k: [h.states[k] for h in hyps] for k in self.scorers},
)
def _batch_select(self, hyps: BatchHypothesis, ids: List[int]) -> BatchHypothesis:
return BatchHypothesis(
yseq=hyps.yseq[ids],
score=hyps.score[ids],
length=hyps.length[ids],
scores={k: v[ids] for k, v in hyps.scores.items()},
states={
k: [self.scorers[k].select_state(v, i) for i in ids]
for k, v in hyps.states.items()
},
)
def _select(self, hyps: BatchHypothesis, i: int) -> Hypothesis:
return Hypothesis(
yseq=hyps.yseq[i, : hyps.length[i]],
score=hyps.score[i],
scores={k: v[i] for k, v in hyps.scores.items()},
states={
k: self.scorers[k].select_state(v, i) for k, v in hyps.states.items()
},
)
[docs] def unbatchfy(self, batch_hyps: BatchHypothesis) -> List[Hypothesis]:
"""Revert batch to list."""
return [
Hypothesis(
yseq=batch_hyps.yseq[i][: batch_hyps.length[i]],
score=batch_hyps.score[i],
scores={k: batch_hyps.scores[k][i] for k in self.scorers},
states={
k: v.select_state(batch_hyps.states[k], i)
for k, v in self.scorers.items()
},
)
for i in range(len(batch_hyps.length))
]
[docs] def batch_beam(
self, weighted_scores: torch.Tensor, ids: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""Batch-compute topk full token ids and partial token ids.
Args:
weighted_scores (torch.Tensor): The weighted sum scores for each tokens.
Its shape is `(n_beam, self.vocab_size)`.
ids (torch.Tensor): The partial token ids to compute topk.
Its shape is `(n_beam, self.pre_beam_size)`.
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
The topk full (prev_hyp, new_token) ids
and partial (prev_hyp, new_token) ids.
Their shapes are all `(self.beam_size,)`
"""
top_ids = weighted_scores.view(-1).topk(self.beam_size)[1]
# Because of the flatten above, `top_ids` is organized as:
# [hyp1 * V + token1, hyp2 * V + token2, ..., hypK * V + tokenK],
# where V is `self.n_vocab` and K is `self.beam_size`
prev_hyp_ids = top_ids // self.n_vocab
new_token_ids = top_ids % self.n_vocab
return prev_hyp_ids, new_token_ids, prev_hyp_ids, new_token_ids
[docs] def init_hyp(self, x: torch.Tensor) -> BatchHypothesis:
"""Get an initial hypothesis data.
Args:
x (torch.Tensor): The encoder output feature
Returns:
Hypothesis: The initial hypothesis.
"""
init_states = dict()
init_scores = dict()
for k, d in self.scorers.items():
init_states[k] = d.batch_init_state(x)
init_scores[k] = 0.0
return self.batchfy(
[
Hypothesis(
score=0.0,
scores=init_scores,
states=init_states,
yseq=torch.tensor([self.sos], device=x.device),
)
]
)
[docs] def score_full(
self, hyp: BatchHypothesis, x: torch.Tensor
) -> Tuple[Dict[str, torch.Tensor], Dict[str, Any]]:
"""Score new hypothesis by `self.full_scorers`.
Args:
hyp (Hypothesis): Hypothesis with prefix tokens to score
x (torch.Tensor): Corresponding input feature
Returns:
Tuple[Dict[str, torch.Tensor], Dict[str, Any]]: Tuple of
score dict of `hyp` that has string keys of `self.full_scorers`
and tensor score values of shape: `(self.n_vocab,)`,
and state dict that has string keys
and state values of `self.full_scorers`
"""
scores = dict()
states = dict()
for k, d in self.full_scorers.items():
scores[k], states[k] = d.batch_score(hyp.yseq, hyp.states[k], x)
return scores, states
[docs] def score_partial(
self, hyp: BatchHypothesis, ids: torch.Tensor, x: torch.Tensor
) -> Tuple[Dict[str, torch.Tensor], Dict[str, Any]]:
"""Score new hypothesis by `self.full_scorers`.
Args:
hyp (Hypothesis): Hypothesis with prefix tokens to score
ids (torch.Tensor): 2D tensor of new partial tokens to score
x (torch.Tensor): Corresponding input feature
Returns:
Tuple[Dict[str, torch.Tensor], Dict[str, Any]]: Tuple of
score dict of `hyp` that has string keys of `self.full_scorers`
and tensor score values of shape: `(self.n_vocab,)`,
and state dict that has string keys
and state values of `self.full_scorers`
"""
scores = dict()
states = dict()
for k, d in self.part_scorers.items():
scores[k], states[k] = d.batch_score_partial(
hyp.yseq, ids, hyp.states[k], x
)
return scores, states
[docs] def merge_states(self, states: Any, part_states: Any, part_idx: int) -> Any:
"""Merge states for new hypothesis.
Args:
states: states of `self.full_scorers`
part_states: states of `self.part_scorers`
part_idx (int): The new token id for `part_scores`
Returns:
Dict[str, torch.Tensor]: The new score dict.
Its keys are names of `self.full_scorers` and `self.part_scorers`.
Its values are states of the scorers.
"""
new_states = dict()
for k, v in states.items():
new_states[k] = v
for k, v in part_states.items():
new_states[k] = v
return new_states
[docs] def search(self, running_hyps: BatchHypothesis, x: torch.Tensor) -> BatchHypothesis:
"""Search new tokens for running hypotheses and encoded speech x.
Args:
running_hyps (BatchHypothesis): Running hypotheses on beam
x (torch.Tensor): Encoded speech feature (T, D)
Returns:
BatchHypothesis: Best sorted hypotheses
"""
n_batch = len(running_hyps)
part_ids = None # no pre-beam
# batch scoring
weighted_scores = torch.zeros(
n_batch, self.n_vocab, dtype=x.dtype, device=x.device
)
scores, states = self.score_full(running_hyps, x.expand(n_batch, *x.shape))
for k in self.full_scorers:
weighted_scores += self.weights[k] * scores[k]
# partial scoring
if self.do_pre_beam:
pre_beam_scores = (
weighted_scores
if self.pre_beam_score_key == "full"
else scores[self.pre_beam_score_key]
)
part_ids = torch.topk(pre_beam_scores, self.pre_beam_size, dim=-1)[1]
# NOTE(takaaki-hori): Unlike BeamSearch, we assume that score_partial returns
# full-size score matrices, which has non-zero scores for part_ids and zeros
# for others.
part_scores, part_states = self.score_partial(running_hyps, part_ids, x)
for k in self.part_scorers:
weighted_scores += self.weights[k] * part_scores[k]
# add previous hyp scores
weighted_scores += running_hyps.score.to(
dtype=x.dtype, device=x.device
).unsqueeze(1)
# TODO(karita): do not use list. use batch instead
# see also https://github.com/espnet/espnet/pull/1402#discussion_r354561029
# update hyps
best_hyps = []
prev_hyps = self.unbatchfy(running_hyps)
for (
full_prev_hyp_id,
full_new_token_id,
part_prev_hyp_id,
part_new_token_id,
) in zip(*self.batch_beam(weighted_scores, part_ids)):
prev_hyp = prev_hyps[full_prev_hyp_id]
best_hyps.append(
Hypothesis(
score=weighted_scores[full_prev_hyp_id, full_new_token_id],
yseq=self.append_token(prev_hyp.yseq, full_new_token_id),
scores=self.merge_scores(
prev_hyp.scores,
{k: v[full_prev_hyp_id] for k, v in scores.items()},
full_new_token_id,
{k: v[part_prev_hyp_id] for k, v in part_scores.items()},
part_new_token_id,
),
states=self.merge_states(
{
k: self.full_scorers[k].select_state(v, full_prev_hyp_id)
for k, v in states.items()
},
{
k: self.part_scorers[k].select_state(
v, part_prev_hyp_id, part_new_token_id
)
for k, v in part_states.items()
},
part_new_token_id,
),
)
)
return self.batchfy(best_hyps)
[docs] def post_process(
self,
i: int,
maxlen: int,
maxlenratio: float,
running_hyps: BatchHypothesis,
ended_hyps: List[Hypothesis],
) -> BatchHypothesis:
"""Perform post-processing of beam search iterations.
Args:
i (int): The length of hypothesis tokens.
maxlen (int): The maximum length of tokens in beam search.
maxlenratio (int): The maximum length ratio in beam search.
running_hyps (BatchHypothesis): The running hypotheses in beam search.
ended_hyps (List[Hypothesis]): The ended hypotheses in beam search.
Returns:
BatchHypothesis: The new running hypotheses.
"""
n_batch = running_hyps.yseq.shape[0]
logging.debug(f"the number of running hypothes: {n_batch}")
if self.token_list is not None:
logging.debug(
"best hypo: "
+ "".join(
[
self.token_list[x]
for x in running_hyps.yseq[0, 1 : running_hyps.length[0]]
]
)
)
# add eos in the final loop to avoid that there are no ended hyps
if i == maxlen - 1:
logging.info("adding <eos> in the last position in the loop")
yseq_eos = torch.cat(
(
running_hyps.yseq,
torch.full(
(n_batch, 1),
self.eos,
device=running_hyps.yseq.device,
dtype=torch.int64,
),
),
1,
)
running_hyps.yseq.resize_as_(yseq_eos)
running_hyps.yseq[:] = yseq_eos
running_hyps.length[:] = yseq_eos.shape[1]
# add ended hypotheses to a final list, and removed them from current hypotheses
# (this will be a probmlem, number of hyps < beam)
is_eos = (
running_hyps.yseq[torch.arange(n_batch), running_hyps.length - 1]
== self.eos
)
for b in torch.nonzero(is_eos, as_tuple=False).view(-1):
hyp = self._select(running_hyps, b)
ended_hyps.append(hyp)
remained_ids = torch.nonzero(is_eos == 0, as_tuple=False).view(-1)
return self._batch_select(running_hyps, remained_ids)