"""V2 backend for `asr_recog.py` using py:class:`espnet.nets.beam_search.BeamSearch`."""
import json
import logging
import torch
from packaging.version import parse as V
from espnet.asr.asr_utils import add_results_to_json, get_model_conf, torch_load
from espnet.asr.pytorch_backend.asr import load_trained_model
from espnet.nets.asr_interface import ASRInterface
from espnet.nets.batch_beam_search import BatchBeamSearch
from espnet.nets.beam_search import BeamSearch
from espnet.nets.lm_interface import dynamic_import_lm
from espnet.nets.scorer_interface import BatchScorerInterface
from espnet.nets.scorers.length_bonus import LengthBonus
from espnet.utils.deterministic_utils import set_deterministic_pytorch
from espnet.utils.io_utils import LoadInputsAndTargets
[docs]def recog_v2(args):
"""Decode with custom models that implements ScorerInterface.
Notes:
The previous backend espnet.asr.pytorch_backend.asr.recog
only supports E2E and RNNLM
Args:
args (namespace): The program arguments.
See py:func:`espnet.bin.asr_recog.get_parser` for details
"""
logging.warning("experimental API for custom LMs is selected by --api v2")
if args.batchsize > 1:
raise NotImplementedError("multi-utt batch decoding is not implemented")
if args.streaming_mode is not None:
raise NotImplementedError("streaming mode is not implemented")
if args.word_rnnlm:
raise NotImplementedError("word LM is not implemented")
set_deterministic_pytorch(args)
model, train_args = load_trained_model(args.model)
assert isinstance(model, ASRInterface)
if args.quantize_config is not None:
q_config = set([getattr(torch.nn, q) for q in args.quantize_config])
else:
q_config = {torch.nn.Linear}
if args.quantize_asr_model:
logging.info("Use quantized asr model for decoding")
# See https://github.com/espnet/espnet/pull/3616 for more information.
if (
V(torch.__version__) < V("1.4.0")
and "lstm" in train_args.etype
and torch.nn.LSTM in q_config
):
raise ValueError(
"Quantized LSTM in ESPnet is only supported with torch 1.4+."
)
if args.quantize_dtype == "float16" and V(torch.__version__) < V("1.5.0"):
raise ValueError(
"float16 dtype for dynamic quantization is not supported with torch "
"version < 1.5.0. Switching to qint8 dtype instead."
)
dtype = getattr(torch, args.quantize_dtype)
model = torch.quantization.quantize_dynamic(model, q_config, dtype=dtype)
model.eval()
load_inputs_and_targets = LoadInputsAndTargets(
mode="asr",
load_output=False,
sort_in_input_length=False,
preprocess_conf=train_args.preprocess_conf
if args.preprocess_conf is None
else args.preprocess_conf,
preprocess_args={"train": False},
)
if args.rnnlm:
lm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
# NOTE: for a compatibility with less than 0.5.0 version models
lm_model_module = getattr(lm_args, "model_module", "default")
lm_class = dynamic_import_lm(lm_model_module, lm_args.backend)
lm = lm_class(len(train_args.char_list), lm_args)
torch_load(args.rnnlm, lm)
if args.quantize_lm_model:
logging.info("Use quantized lm model")
dtype = getattr(torch, args.quantize_dtype)
lm = torch.quantization.quantize_dynamic(lm, q_config, dtype=dtype)
lm.eval()
else:
lm = None
if args.ngram_model:
from espnet.nets.scorers.ngram import NgramFullScorer, NgramPartScorer
if args.ngram_scorer == "full":
ngram = NgramFullScorer(args.ngram_model, train_args.char_list)
else:
ngram = NgramPartScorer(args.ngram_model, train_args.char_list)
else:
ngram = None
scorers = model.scorers()
scorers["lm"] = lm
scorers["ngram"] = ngram
scorers["length_bonus"] = LengthBonus(len(train_args.char_list))
weights = dict(
decoder=1.0 - args.ctc_weight,
ctc=args.ctc_weight,
lm=args.lm_weight,
ngram=args.ngram_weight,
length_bonus=args.penalty,
)
beam_search = BeamSearch(
beam_size=args.beam_size,
vocab_size=len(train_args.char_list),
weights=weights,
scorers=scorers,
sos=model.sos,
eos=model.eos,
token_list=train_args.char_list,
pre_beam_score_key=None if args.ctc_weight == 1.0 else "full",
)
# TODO(karita): make all scorers batchfied
if args.batchsize == 1:
non_batch = [
k
for k, v in beam_search.full_scorers.items()
if not isinstance(v, BatchScorerInterface)
]
if len(non_batch) == 0:
beam_search.__class__ = BatchBeamSearch
logging.info("BatchBeamSearch implementation is selected.")
else:
logging.warning(
f"As non-batch scorers {non_batch} are found, "
f"fall back to non-batch implementation."
)
if args.ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
if args.ngpu == 1:
device = "cuda"
else:
device = "cpu"
dtype = getattr(torch, args.dtype)
logging.info(f"Decoding device={device}, dtype={dtype}")
model.to(device=device, dtype=dtype).eval()
beam_search.to(device=device, dtype=dtype).eval()
# read json data
with open(args.recog_json, "rb") as f:
js = json.load(f)["utts"]
new_js = {}
with torch.no_grad():
for idx, name in enumerate(js.keys(), 1):
logging.info("(%d/%d) decoding " + name, idx, len(js.keys()))
batch = [(name, js[name])]
feat = load_inputs_and_targets(batch)[0][0]
enc = model.encode(torch.as_tensor(feat).to(device=device, dtype=dtype))
nbest_hyps = beam_search(
x=enc, maxlenratio=args.maxlenratio, minlenratio=args.minlenratio
)
nbest_hyps = [
h.asdict() for h in nbest_hyps[: min(len(nbest_hyps), args.nbest)]
]
new_js[name] = add_results_to_json(
js[name], nbest_hyps, train_args.char_list
)
with open(args.result_label, "wb") as f:
f.write(
json.dumps(
{"utts": new_js}, indent=4, ensure_ascii=False, sort_keys=True
).encode("utf_8")
)